近日有媒体报道,AI问答引擎Perplexity的创始人兼首席执行官Srinivas 在《Invest Like The Best》播客的最近一期节目中表示:“我试图从Meta聘请一位非常资深的研究员,你知道对方怎么回应吗?——等你有了10000 块 H100 GPU再来找我。”虽然只是一则招聘吐槽,但也表明了当前基础大模型训练对算力的巨大需求。在“大力出奇迹”的大模型范式下,算力的多少一定程度上决定了智能的高低。据传GPT4训练大概用2.5万张A100,GPT5训练大约用5万张H100(约等同于15万张A100的算力)。扎克伯格近期表示,计划今年年底前向英伟达购买35万张H100芯片,将形成相当于60万张H100的总算力,训练Llama 3大模型,以追赶GPT5。据报道,0pen Al创始人奥特曼正在筹集多达7万亿美元资金,用于自研AI芯片,以推动其大模型的迭代。(被业界质疑夸张,因2023年全球半导体市场规模为5330亿美元)
大模型是一个复杂的算法和工程难题,而这一轮大模型的发展,很大程度上是由顶尖人才驱动的,人才密度和强度至关重要。OpenAI的三位灵魂人物是CEO Sam Altman、总裁Greg Brockman,以及图灵奖得主辛顿的爱徒,首席科学家伊利亚。他们在Open AI成立的前七年间,在无收入的情况下,坚定AGI信仰,并持续投入数十亿美元,即便受到无数的不解和嘲讽也保持初心,才造就了ChatGPT一鸣惊人的神话。
Character.ai是用户访问量仅次于GPT的聊天陪伴应用,这家独角兽虽然只有22人,但其创始人Noam Shazeer是Google的前 200 号员工,在Google工作的 17 年中,他参与了Google的一系列AI项目和研究,是《Attention is All You Need》论文,也就是Transformer架构的核心作者,以及Google LaMDA项目的核心成员。
对于大模型而言,每一个大版本的迭代都具有很强的代际碾压效应,这导致很多基于GPT创业的小公司面临一夜之间倒闭的风险。如读文件的ChatPDF、明星独角兽Jasper等,都被GPT的更新所碾压。甚至有行业开发者表示,千万不要基于 Open AI 做 PaaS,否则必然会被 Open AI 的下一个版本替代。因此,在原有开源基础模型上做优化的方式,很可能被下一个版本的功能所替代。而且更为重要的是,原有的开源方式更适合做生态,即在底层内核保持相对稳定的基础上,通过开源来实现应用的创新,但受限于算力和算法等,开源生态的开发者没有能力对基础大模型给予能力迭代的贡献,这使得原有集众智的开源模式很难在基础大模型自身的快速演进上复现。
大力出奇迹的范式,在当下证明是最为有效的路径,包括Sora的成功,也再次验证了除文字领域,视频领域的Scaling Law也同样有效。Open AI把Scaling Law作为企业的核心理念,其原话为:“We believe that scale-in our models, our systems, ourselves, ourprocesses, and our ambitions-is magic. When in doubt, scale it up”