国外开始重视数据伦理的理念原则与落地实施。《欧盟数据战略》(A European Strategy for Data)提出,在促进数据的广泛流通与利用的同时,也需要维护较高的隐私、安全与伦理标准。《英国国家数据战略》(UK National Data Strategy)提出了“负责任数据”(Responsible Data)的理念,认为在支持研究与创新的同时,也需要以合法、安全、公平、符合伦理、可持续、可问责的方式开发利用数据,促进数据活动的公平性、透明度与信任。政府、企业及个人都需要在其中发挥好各自的作用。
为此,英国将继续推进数据伦理框架在公共部门的落实,支持产业界打造数据伦理能力,并通过数据伦理社群传播相关知识、资源和案例。美国《联邦数据战略框架》(Federal Data Strategy Framework)提出了涵盖伦理治理、有意识设计、学习文化三个方面的10项原则,其中涉及伦理治理的三项原则分别是:坚持伦理,确保数据向善;落实责任,确保数据利用活动合法合规;促进透明度,确保公众对政府数据活动的信任。
我国《数据安全法》第28条提出数据活动须符合“社会公德和伦理”,第一次在立法层面明确了数据活动的伦理原则要求,但是,当前仍缺乏具体的、可执行的数据伦理框架或指南。借鉴国外的经验,政府部门、企业的数据与算法活动需要加强数据伦理治理,考虑制定更具适应性的数据伦理治理框架指导数据相关项目;建立伦理审查机制,对具有较高风险或影响的数据相关产品、人工智能模型进行伦理评估,及时防范、消除相关伦理风险;培养负责任地利用数据的内部文化,以及数据分析人员的数据伦理意识;践行“伦理嵌入设计”(Ethics by Design,简称EbD)的理念,将伦理价值和要求嵌入数据与人工智能相关产品。此外,数字政府建设和政府公共数据的开放共享等政府数据开发利用活动,也需要遵循一定的“数据伦理框架”,确保数据向善,防范数据滥用。
正因如此,主流科技公司和创业公司都在加速布局合成数据领域,英伟达、亚马逊、微软等科技巨头都开始提供合成数据服务或应用;全球已经涌现了上百家聚焦图像、金融、零售、医疗等不同细分领域的合成数据服务商,提供合成数据服务(Synthetic Data as a Service),推动合成数据市场持续创新。
未来,合成数据在诸多领域都具有巨大的应用价值。2021年6月,Gartner在《忘掉真实数据——合成数据是人工智能的未来》(Forget About Your Real Data — Synthetic Data Is the Future of AI)中预测,到2030年,人工智能模型训练使用的大部分数据将是合成数据。可以说,合成数据作为数据要素市场的新增量,有望成为数据要素市场的重要组成部分。数据要素市场的未来发展将有望在很大程度上依赖于合成数据这一新增量,为此,需要加大投入于合成数据产业,出台相关的扶持与支持政策,抢抓未来发展机遇。